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Admissibility condition 

Analyzing wavelet family 
generated by translation (b)  

and dilation (a) 
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SIAM J. math. Anal., 15(4), 723-736, 1984 

Choice of the analyzing wavelet 



Continuous wavelet transform (CWT) 

Analysis 

Synthesis 

Parseval’s identity 



Wavelet representation 

Physical space Spectral space	
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2D continuous wavelet transform	



2D Morlet mother wavelet 

The wavelet family is generated 
by translating, dilating and rotating 

the 2D mother wavelet 
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Wavelet frame	



We can then select a finite number of wavelets 
restricted to a discrete grid optimally chosen such that  
the wavelet family associated to this grid constitutes  
a quasi-orthogonal basis               a wavelet frame 
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For example 
 for Marr wavelet  
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a0=21/2 
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    Orthogonal wavelet transform 
  

Wavelet analysis : 

  
Wavelet synthesis : 

  
  

A signal sampled on N points is 
wavelet analyzed and synthetized in CN operations 

if one uses compactly-supported wavelets 
computed from a quadratic mirror filter of length M. 

with 



2D orthogonal wavelets	
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3D orthogonal wavelets 

 ・      fast algorithm with linear complexity      	

      ・   no redundancy between the coefficients 

wavelet coefficients at a scale indexed by j 

    A 3D vector field v(x) sampled on                   equidistant grid points      

                                                       orthogonal wavelet series 

We use Coifman 12 wavelet  
compactly supported with four vanishing moments. 

€ 

N j = 7 × 23 j ,

→3D wavelet    



    Orthogonal wavelet representation 
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ITER (World) 

Application to tokamaks 

Tore-Supra, Cadarache (France) 

ETE, INPE (Brazil) 

JET, Culham (Europe) 



 Turbulent edge plasma  
in the SOL (Scrape Off Layer), 

where there are very large density 
and temperature gradients 

Ion density fluctuations measured  
by a fast reciprocating Langmuir probe. 

Edge plasma is colder  
than core plasma, then ions  

and electrons can recombine. 
 Recombination and  

later desexcitation induce  
visible light emission  

(e.g., Hα line with λ=656 nm). 

Video acquisition using 
a fast camera (40 KHz).  

Turbulent edge plasma in the SOL 

SOL 
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How to extract coherent structures? 

     Since there is not yet a universal definition of coherent structures  
    which emerge out of turbulent fluctuations due to the nonlinear interactions, 

we adopt an apophetic method : 
instead of defining what they are, we define what they are not. 

Choosing the simplest hypothesis as a first guess, 
 we suppose we want to eliminate an additive Gaussian white noise, 

and for this we use a nonlinear wavelet filtering. 
€ 

⇒

Farge, Schneider et al., 
Phys. Fluids, 15 (10), 2003 

Extracting coherent structures becomes a denoising problem,  
not requiring any hypotheses on the structures themselves  

but only on the noise to be eliminated. 

For this we propose the minimal statement :           
    ‘Coherent structures are not noise’           

Azzalini, Farge, Schneider, 
ACHA, 18 (2), 2005 



Denoising using wavelets	


Gaussian white noise is by definition equidistributed among all 
modes and the amplitude of the coefficients is given by its r.m.s., 
whatever the functional basis one considers. 

Therefore the coefficients of a noisy signal whose amplitudes are larger 
than the r.m.s. of the noise belong to the denoised signal. This 
procedure corresponds to nonlinear filtering. 

The advantage of performing such a nonlinear filtering using the 
wavelet representation is that the wavelet coefficients preserve the 
space locality, since wavelets are functions localized in both physical 
and spectral space.  

Since we do not know a priori the r.m.s. of the noise, we have proposed 
an iterative procedure which takes as first guess the r.m.s. of the noisy 
signal. 

Azzalini, M. F., Schneider, 2005  
Appl. Comput. Harmonic Analysis, 18 (2) 



          Apophatic method : 
 - no hypothesis on the structures, 
 - only hypothesis on the noise, 
 - simplest hypothesis as our first choice. 

Hypothesis on the noise : 
        fn = fd + n 

n         Gaussian white noise, 
<fn2>   variance of the noisy signal,    
N         number of coefficients of fn. 

    Wavelet decomposition : 

   Estimation of the threshold : 

   Wavelet reconstruction : 
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Farge, Schneider & Devynck 
Phys. Plasmas,13, 042304, 2006 Coherent Incoherent 

Ion density fluctuations measured by a fast reciprocating 
Langmuir probe in the SOL of the tokamak Tore Supra 

 (Pascal Devynck, Tore-Supra, CEA-Cadarache) 

+ 

Extraction of coherent structures SOL  



Farge, Schneider & Devynck,  
Phys. Plasmas,13, 2006 

PDF of the density fluctuations	
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Total fluctuations = coherent + incoherent fluctuations 



Scalogram 
(stabilized periodogram) 

Flatness versus scale 
(from wavelet coefficients)  
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Correlation and intermittency 

Farge, Schneider & Devynck, Phys. Plasmas,13, 2006 

k-5/3 
k0 

Coherent ones 
are correlated 

Incoherent ones are 
non-intermittent 

Incoherent  
fluctuations are 

decorrelated 

Coherent 
fluctuations 

are intermittent 

Total fluctuations = coherent + incoherent fluctuations 



 A fast camera from the Nancy team (G. Bonhomme and F. Brochard) 
was installed on Tore-Supra (N. Fedorczak and P. Monier-Garbet). 

An helical Abel transform  relates the plasma light emissivity S  
to the integral of the volume emissivity received by the camera I=KS,  

where K is a compact continuous operator. 
Reconstruction of S from I is an inverse problem 

which becomes very difficult  
when S is corrupted by noise, 

then solving K-1 is an ill-posed problem. 

Tomographic inversion  
using wavelet-vaguelette decomposition  

as an alternative to SVD 
(Singular Value Decomposition). 

Fast visible light camera 
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Image tomography 



Tomography inversion in presence of noise 

Plasma light emissivity S  

Image received by the camera: integral of the volume emissivity I=KS 

Denoised plasma emissivity  

Nguyen, Fedorczak, Brochard,  
Bonhomne, Schneider, Farge, 

Monier-Garbet, Nuclear Fusion, 
52, 2012 



Movie from a fast camera in Tore-Supra tokamak	



Nguyen, Fedorczak, Brochard,  
Bonhomne, Schneider, Farge, 

Monier-Garbet, Nuclear Fusion, 52, 2012 
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Coherent structures extraction in 3D MHD flow 

Yoshimatsu, 
Kondo, 

Schneider, 
Okamoto, 
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& Farge 

Phys. Plasmas,
16, 2009 
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Coherent Vorticity Simulation (CVS) 



1.  Selection of the wavelet 
coefficients whose modulus  

       is larger than the threshold. 

2.  Construction of a ‘graded-tree’ 
which defines the ‘interface’ 
between the coherent and 
incoherent wavelet coefficients. 

3. Addition of a ‘security zone’ 
which corresponds to dealiasing. 

Coherent Vortex Simulation (CVS) 

Schneider & Farge, 2002, 
Appl. Comput. Harmonic Anal., 12 

Schneider, Farge et al., 2005, 
J. Fluid Mech., 534(5) 

Schneider & Farge, 2000, 
Comp. Rend. Acad. Sci. Paris, 328 



DNS CVS 

3D turbulent mixing layer 

4 eddy turnover times 

Schneider, Farge, 
Pellegrino, Rogers 2005, 

J. Fluid Mech., 534(5) 



3D turbulent mixing layer 

DNS CVS 

8 eddy turnover times 

Schneider, Farge, 
Pellegrino, Rogers 2005, 

J. Fluid Mech., 534(5) 



3D turbulent mixing layer 

DNS CVS 

12 eddy turnover times 

Schneider, Farge, 
Pellegrino, Rogers 2005, 

J. Fluid Mech., 534(5) 



Koster, Schneider, Griebel, Farge 
Numerical Flow Simulation II, 

75, Springer, 2001 

Adaptive computation 
using wavelets  



Adaptive computation using wavelets  

Roussel and Schneider, 
75, 2000 



Turbulence practice is the ‘art of averaging’ 

Reynolds averaging (1883) : 

New way of averaging (1992): 

with 

Fluctuations = coherent fluctuations + incoherent fluctuations 
             = intermittent fluctuations + non-intermittent fluctuations 

but nonlinearity is hard to handle since there is no scale separation : 

Field       = Mean       + Fluctuations 
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