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Integral transforms
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Continuous Fourier transform
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Analysis
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Optimal phase space tiling
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Choice of the analyzing wavelet

Admissibility condition
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Continuous wavelet transform (CWT)

Analysis
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Wavelet representation

. >
Physical space Ax Ak > C Spectral space
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2D continuous wavelet transform
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2D Morlet mother wavelet Y %’ \ j

The wavelet family is generated
by translating, dilating and rotating

the 2D mother wavelet




Analyzing wavelet — &% —

Field to analyze
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Wavelet frame

We can then select a finite number of wavelets
restricted to a discrete grid optimally chosen such that
the wavelet family associated to this grid constitutes
a quasi-orthogonal basis =—> a wavelet frame
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Orthogonal wavelet transform

N Wavelet analysis : | |
fis = (Wil f) with by = 277%(2z — i)

Wavelet synthesis :

f= ) (bl f)w;

71

A signal sampled on N points is
wavelet analyzed and synthetized in CN operations
if one uses compactly-supported wavelets
computed from a quadratic mirror filter of length M.



2D orthogonal wavelets

Scaling function Wavelet
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3D orthogonal wavelets

A 3D vector field v(x) sampled on \V — 237 equidistant grid points

Uy (x) 3D wavelet — orthogonal wavelet series

v(®) =) 0aUa(x), o= (v.n)

a(x)

A={N=(Jyin, 1, oy = 1,4, =0,...,2 —1,n=1,23, and p = 1,..., 7}

Nj =] % 23j, wavelet coefficients at a scale indexed by j

fast algorithm with linear complexity
no redundancy between the coefficients

We use Coifman 12 wavelet
compactly supported with four vanishing moments.



Orthogonal wavelet representation
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Academic example
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Linear approximation
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Nonlinear approximation
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Application to tokamaks

Tore-Supra, Cadarache (France)

JET, Culham (Europe)



Turbulent edge plasma in the SOL

Turbulent edge plasma

in the SOL (Scrape Off Layer),
where there are very large density

and temperature gradients
—

lon density fluctuations measured
by a fast reciprocating Langmuir probe.

Edge plasma is colder
than core plasma, then ions

and electrons can recombine.

Recombination and
later desexcitation induce
visible light emission

(e.g., Ha line with A=656 nm).

—

Video acquisition using
a fast camera (40 KHz).

JET Pulse No: 77616, 16.92s
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How to extract coherent structures?

Since there is not yet a universal definition of coherent structures
which emerge out of turbulent fluctuations due to the nonlinear interactions,
we adopt an apophetic method :
instead of defining what they are, we define what they are not.

For this we propose the minimal statement :
‘Coherent structures are not noise’

—

Extracting coherent structures becomes a denoising problem,
not requiring any hypotheses on the structures themselves
but only on the noise to be eliminated.

Choosing the simplest hypothesis as a first guess,
we suppose we want to eliminate an additive Gaussian white noise,
and for this we use a nonlinear wavelet filtering.




Denoising using wavelets

Gaussian white noise is by definition equidistributed among all
modes and the amplitude of the coefficients is given by its r.m.s.,
whatever the functional basis one considers.

Therefore the coefficients of a noisy signal whose amplitudes are larger
than the r.m.s. of the noise belong to the denoised signal. This
procedure corresponds to nonlinear filtering.

The advantage of performing such a nonlinear filtering using the
wavelet representation is that the wavelet coefficients preserve the
space locality, since wavelets are functions localized in both physical
and spectral space.

Since we do not know a priori the r.m.s. of the noise, we have proposed
an iterative procedure which takes as first guess the r.m.s. of the noisy

signal.



Wavelet denoising algorithm

Apophatic method :

- no hypothesis on the structures,
- only hypothesis on the noise,
- simplest hypothesis as our first choice.

Hypothesis on the noise :
f,=f;+n

n Gaussian white noise,
<f.2> variance of the noisy signal,
N number of coefficients of f,,.

Wavelet decomposition :

~ J scale,
fji =<f “/in > | position

Estimation of the threshold :
—\2<£’> In(N)

Wavelet reconstruction :

Ef

n

]l




Extraction of coherent structures SOL

lon density fluctuations measured by a fast reciprocating
Langmuir probe in the SOL of the tokamak Tore Supra
(Pascal Devynck, Tore-Supra, CEA-Cadarache)
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PDF of the density fluctuations
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Total fluctuations = coherent + incoherent fluctuations




Correlation and intermittency

Scalogram Flatness versus scale
(stabilized periodogram) (from wavelet coefficients)
10’ ; ' 10°
Coherent ones Coh ¢
100} o are correlated | oneren
BN fluctuations
| k-5/3 , are intermittent
B 107
E.E
[A.U]
107 . _
. O O Laeg F(w)
ol Incoherent ‘ o
| fluctuations are o e g
ol decorrelated X - ST -
| | ~ Incoherent ones are
. . . , non-intermittent
10" 10° 10" 10> x125kHz 10 5 " =
w [kHz] 10 10 o [kilz] 10 10 x 1.25 kHz

Total fluctuations = coherent + incoherent fluctuations
- Farge, Schneider & Devynck, Phys. Plasmas, 13, 2006



Fast visible light camera

A fast camera from the Nancy team (G. Bonhomme and F. Brochard)
was installed on Tore-Supra (N. Fedorczak and P. Monier-Garbet).

An helical Abel transform relates the plasma light emissivity S
to the integral of the volume emissivity received by the camera [=KS,
where K is a compact continuous operator.
Reconstruction of S from | is an inverse problem
which becomes very difficult
when S is corrupted by noise,
then solving K- is an ill-posed problem.
=
Tomographic inversion
using wavelet-vaguelette decomposition
as an alternative to SVD
(Singular Value Decomposition).
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Tomography inversion in presence of noise

Image received by the camera: integral of the volume emissivity |=KS

1

Plasma light emissivity S
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Movie from a fast camera in Tore-Supra tokamak
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Noise reduction in plasma simulations using particles

Accuracy of particle simulations is limited by noise

(statistical sampling, not enough particles and grid effects)

Wavelet based density estimation, accurate estimation of distribution
functions with localized sharp features

Preservation of moments in the distribution functions

No a priori selection of a global smoothing scale

No constraints on the dimensionality

Computationally efficient: same order as for finite size particle approach




Noise reduction in plasma simulations using particles

Collisional guiding center transport data (Deltadd)
Histogram N= 32 10° No= 128 10° N.= 1024 10°
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Noise reduction in plasma simulations using particles

Collisional guiding center transport data (Delta5d)
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%
: b
4\\
\f' N
\\
N
10'
10° 10° 10

RMS error estimate with respect to the reference density computed with Np = 1024 x 103.

Error reduction by about a factor 2.




Particle in wavelets scheme for Vilasov-Poisson eg

Plasma distribution function is discretized using tracer particles

The charge distribution is reconstructed using wavelet based density
estimation

Wavelet expansion of the Dirac delta functions corresponding to each
particle

Wavelet Galerkin Poisson solver to compute the electric potential from the
electron charge density (diagonal preconditioning)

Improvement of precision compared to a classical PIC scheme for a given

number of particles




Particle in wavelets scheme for Vlasov-Poisson equation

Two-stream instability test case

0 § 10 1Sx 2 2% &0 0 § 10 15x 2D e &0

Particle distribution function at t=10 (left) and t=30 (nght).




Particle in wavelets scheme for Vlasov-Poisson equation

L? error on the electric field at ¢ = 30,
as a function of number of particles
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Coherent structures extraction in 3D MHD flow

Total

100 % N 100 % N
Coherent

3.21%N 3.16 % N
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Velocity Vorticity
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Coherent Vorticity Simulation (CVS)
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Coherent Vortex Simulation (CVS)

1. Selection of the wavelet
coefficients whose modulus
is larger than the threshold.

2. Construction of a ‘graded-tree’
which defines the ‘interface’
between the coherent and
incoherent wavelet coefficients.

3. Addition of a ‘security zone’
which corresponds to dealiasing.




3D turbulent mixing layer

4 eddy turnover times
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3D turbulent mixing layer

8 eddy turnover times

50 -




3D turbulent mixing layer

12 eddy turnover times




Adaptive computation
using wavelets




Adaptive computation using wavelets
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Turbulence practice is the ‘art of averaging’

Reynolds averaging (1883) :
Field f = Mean f + Fluctuations f /

with F =0 f=17
f+g=f+g of=0f

but nonlinearity is hard to handle since there is no scale separation :
f£fqh— £5 ! !
fa=rg+1r'g
New way of averaging (1992):

f'=fi+fi

Fluctuations = coherent fluctuations + incoherent fluctuations
= jntermittent fluctuations + non-intermittent fluctuations
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